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In the investigation of the creep buckling of columns a certain characteristic of the deflection-time curve is usual-
ly adopted as the criterion of "loss of stability”. Examples include the point where deflection becomes infinite in
finite time [13, the minimum point [2], the point of inflection [3, 4], and the point where rate of deflection becomes
infinite [5, 8].

In this paper I shall study the qualitative nature of the buckling process as a function of the load level with refer-
ence to an elastoplastic strut (Shanley model, Fig. 1).

1. Consider an elastoplastic material with linear properties (Fig. 2). We shall relate all the linear quantities to
1/2h; the subscripts 1 and 2 apply to the first and second struts, respectively; a dot above a symbol indicates differen-
tiation with respect to time t; compressive stresses, loads, and strains are considered to be positive; E is Young's modu-
lus; E; is the shear modulus and is assumed to be constant; ¢ = P/F, where F is the total cross-sectional area of the
struts; all the stresses are related to the Euler stress op =Eh/4L.

For the sake of simplicity, we shall assume a power law of creep with an odd exponent. Then the rates of defor-
mation g; and e, of the struts are described by the relations:
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where o is the yield point.

We have the equilibrium equations and the equations of compatibility of deformation rates for the Shanley model
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Here o, is the stress with respect to the shear modulus, In the case of monotonically increasing loads the expression
in the curly brackets on the right side of the equation is a decreasing function, which for elastoplastic strains has the

form:
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Expression (1.5) becomes zero when o = op and (1.6) when o = 0 . We assume that the initial error is positive, in

which case, obviously, sgn w = sgn wp. We assunic that the quasistatic formulation is correct if the solution of {1.4) is

of the type w >0, 0 > W == 0.

2. Instantaneous loading is understood to mean loading ar a rare 0 such that the creep has no time to take effect be-
fore the load reaches its maximum; dynamic effects, however, may be ignored [8]. We have the equation of elasto-
plastic longitudinal bending
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In quasistatic elastoplasric processes time is unimporrant since the differenrial dr can be climinated from the equa-
tion. It is easy to show that, given cerrain assumprions concerning tie initial deflection and the type of loading, Eq.
(2.1) will yield all the known results [9-11] int very compact form.

Let us now consider the successive stages of loading,.
Nifa < o,, thenky =k, =0. We have
Cw=w{l—0), w==w; wheno=20, (2.2)
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This solution holds for 6; < o_. let us now find the value o and the corresponding deflection

for which gy ~ o ¢
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Fig., 1.

2) ifagy > o, thenky - 1, but |oy| << 0e, and ka=0. We have

cw{l+al+ode=v{l—0c(1+a), w=w® wheno=oc",

whence
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It can be shown that, for small initial deflections w, &~ 0.1, the stress 0{2) at which
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The results of some computations are listed in the Table.

The inequalities (2. 4) are important for the subsequent analy-
sis. Further, wheno > o(%) the quasistatic solution cannot be

o6, | o | op | g2 [ 0@ wiz) w® constructed since k; = ky = 1, and therefore we would have
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0.4 10.5(0.6100.7510.68 [1.73]0.67 |1.835 is negative, and the solution would give a negative velocity. Paper

0.15 0.664{1.76]0.92 [10] shows that in this case equilibrium is disturbed.

3. Let us now investigate the following problems: a strut is in-
stantaneously loaded to the level o = oy; we shall determine the effect of the value 6y on creep buckling. We load the
strut with a force oy = o, ; then since ]02] < o, (this may be seen from (2.4)), ky = 0. From (1.4) we have
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This equation remains valid up to a deflection wy*, at which
0 — 0’9(1 —_ w]*) = —C0« .
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The time needed to arrive at this deflection is
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6w < 0, and, since 6,8 > 0, ky = 1. The expression in

For w =z wy* we have ki =1, |62] > 0., 0

square brackets on the right vanishes and
w’ (t;’) = o0
wi* ) we have loss of stability in the Hoff sense (Fig. 3,a). We now apply a load

Consequently, whent = t; *(w
09 = o + 0, where &g is a positive or a negative quantity.

a) 60 < 0. We have Eq. (3.1) with the initial condition
when ¢t=0

= 1,2
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As above, this equation remains valid up to a certain deflection wy*(t,*), at which the yield point in the second strut
(3.2)

0y = 0% is reached; thereupon the equation becomes
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Since the square brackets contain a positive constant, the quasistatic formulation remains correct for any value of

the deflection.
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The integral converges for w = e~ andn > 1, and the critical value ist, = t (=), i.e., loss of stability takes the
form of an infinite deflection (Fig. 3,b).
b) For 6 > 0 we have Eq, (3. 1), where gy > op. In this case the initial condition is an instantaneous deflection

Wy ) corresponding to og. For w = wy* we have g, = —o,. This deflection is reached during time
ws*
dw
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Since for w > W;* we have lozl >0,, K = 1, and the buckling would be described by Eq. (3.2), the brackets on

the right of this equation then containing a negative constant
1—o0op(1+2a) <0.
This shows that for t > t3* the quasistatic formulation ceases to be correct. It should be stressed that

0 < w(t*—0) < o when t=ts*.

Thus, the curve w ~ t for og = o, is unstable in the sense that any change in the instantaneously applied load causes
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asubstantial change in the type of buckling.

The author is very grateful to Yu. P, Rabotnov, Yu. V. Nemirovskii, and L. M. Kurshin for useful discussion of

his work.
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